Quantum criticality analysis by finite-size scaling and exponential basis sets

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantum criticality analysis by finite-size scaling and exponential basis sets.

We combine the finite-size scaling method with the mesh-free spectral method to calculate quantum critical parameters for a given Hamiltonian. The basic idea is to expand the exact wave function in a finite exponential basis set and extrapolate the information about system criticality from a finite basis to the infinite basis set limit. The used exponential basis set, though chosen intuitively,...

متن کامل

Finite-size scaling for quantum criticality using the finite-element method.

Finite size scaling for the Schrödinger equation is a systematic approach to calculate the quantum critical parameters for a given Hamiltonian. This approach has been shown to give very accurate results for critical parameters by using a systematic expansion with global basis-type functions. Recently, the finite-element method was shown to be a powerful numerical method for ab initio electronic...

متن کامل

Finite Size Scaling for Criticality of the Schrödinger Equation

By solving the Schrödinger equation one obtains the whole energy spectrum, both the bound and the continuum states. If the Hamiltonian depends on a set of parameters, these could be tuned to a transition from bound to continuum states. The behavior of systems near the threshold, which separates bound-states from continuum states, is important in the study of such phenomenon as: ionization of at...

متن کامل

Finite element method for finite-size scaling in quantum mechanics.

We combined the finite-size scaling method with the finite element method to provide a systematic procedure for obtaining quantum critical parameters for a quantum system. We present results for the Yukawa potential solved with the finite element approach. The finite-size scaling approach was then used to find the critical parameters of the system. The critical values lambda c, alpha, and nu we...

متن کامل

Finite-size scaling of classical long-ranged Ising chains and the criticality of dissipative quantum impurity models.

Motivated in part by quantum criticality in dissipative Kondo systems, we revisit the finite-size scaling of a classical Ising chain with 1/r;{2-} interactions. For 1/2<<1, the scaling of the dynamical spin susceptibility is sensitive to the degree of "winding" of the interaction under periodic boundary conditions. Infinite winding yields the expected mean-field behavior, whereas without any wi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physical Review E

سال: 2013

ISSN: 1539-3755,1550-2376

DOI: 10.1103/physreve.87.043308